1、激光制冷中的一个很重要的技术就是多普勒冷却技术,多普勒冷却技术的原理就是通过激光发出光子来阻碍原子的热运动,而这个阻碍过程则是通过减小原子的动量来实现的。那么,激光究竟是如何来减小这些原子的动量呢?
首先,量子力学提出,原子只能吸收特定频率的光子,从而改变其动量。多普勒效应指出,波在波源移向观察者时频率变高,而在波源远离观察者时频率变低。当观察者移动时也能得到同样的结论。
同样,对于原子也是如此,当原子的运动方向与光子运动相反时,则此光子的频率将增大,而当原子运动方向于此光子运动方向相同时,则此光子频率将减小。然后的话,另一个物理学原理就是光虽然没有静质量,但其具有动量。那么综合以上几个个物理学特性,我们就能构建出激光冷却的简单模型。
2、激光器的频率在一定范围内是可调的,而把激光器的频率调至略低于某原子的可以吸收的频率时,就会有意想不到的结果。当用这样一束光照射某一特定的原子时,就会发生这样的情况。如果原子是向着激光束运动时,由于光的多普勒效应,则光子的频率增加,而原来激光光子的频率刚好是略小于原子的可吸收的频率,则此时由于多普勒效应则刚好被原子吸收。
而这一吸收表现为动量改变。因为光子的运动方向与原子的运动方向相反,则在光子与原子碰撞之后,原子跃迁到激发态,并且动量减小,故动能也随之减小。而对于其他运动方向的原子,则其对应的光子的频率不会增加,所以不能吸收激光束中的光子,所以也不会有动量增加这一现象的发生,相对于动能来讲也是一样。
当我们用多束激光从不同角度来照射原子,则在不同运动方向上的原子的动量都会减小,从而动能减小。而由于在激光只减小原子的动量,所以在此过程持续一段时间后,大多数的原子的动量就会达到一个很低的水准,从而达到制冷的目的。
但此技术所应用的范围大多是用于原子冷却,而对于分子,这种方法很难将其冷却到超低温。但超冷分子比超冷原子的意义更大,因为其属性更为复杂。目前,冷却分子的方法是将超冷碱原子结合在一起,产生双碱分子。不久之前,耶鲁大学就曾经将氟化锶(SrF)冷却到几百微开。
另一种激光制冷也称反斯托克斯荧光制冷,是正在发展的新概念的制冷方法其基本原理是反斯托克斯效应,利用散射与入射光子的能量差实现制冷。反斯托克斯效应是一种特殊的散射效应,其散射荧光光子波长比入射光子波长短。
因此,散射荧光光子能量高于入射光子能量,其过程可简单理解为:用低能量激光光子激发发光介质,发光介质散射出高能量的光子,将发光介质中的原有能量带出介质而制冷。与传统制冷方式相比,激光起到了提供制冷动力的作用,而散射出的反斯托克斯荧光则是热量载体。
转载请注明出处。