通过使研究人员能够降低温度梯度(冷热极值之差)和控制冷却速度,该技术将金属3D打印测试部件的有效残余应力降低了90%。论文的第一作者约翰·罗林(John Roehling)说:在金属领域,真的很难克服这些压力,我们已经做了很多工作,试图改变扫描策略来重新分配残余应力,但基本方法是在构建部件时消除它们,这样就不会有任何这些问题。使用这种方法,可以有效地消除残余应力,使其在构建过程中不再出现部件故障。
为了研究,LLNL的工程师和共同第一作者Will Smith用316L不锈钢用激光粉末熔床(LPBF)工艺建造了小型桥梁状结构。先让每一层固化,然后用二极管照亮表面,一开始是全功率,然后在20秒内迅速降低强度。结果就像把零件放在每一层之后的炉子里,因为表面温度达到了大约1000摄氏度(1832华氏度)。成品的腿很粗,悬垂部分很薄,研究人员可以通过切断其中一条腿,分析较弱的悬垂部分移动了多少。
来测量残余应力减轻了多少,当使用二极管时,桥不再偏转。制造这些部件与普通金属3d打印机的工作原理类似,但该研究的机器创新之处在于,使用了二次激光,它投射到更大的区域,然后对部件进行后加热——它会迅速升高温度,然后以可控的方式慢慢冷却。当使用二极管时,发现有减少残余应力的趋势,这与传统上在烤箱中退火零件的做法相比较。这是一个很好的结果,也显示了技术是多么有效。该方法是之前一个项目的一个分支。
在该项目中,激光二极管(开发用于在NIF中平滑激光)被用于一次3d打印整个金属层。这种方法优于其他降低金属零件残余应力的常用方法,如改变扫描策略或使用加热构建板。因为这种方法是从顶部加热的,所以零件的高度没有限制。研究人员下一步将进行更深入的研究,将注意力转向增加每加热循环的层数,看看他们是否能在相同程度上减少残余应力,尝试更复杂的零件,并使用更多的定量技术,以获得对过程更深入的了解。这项技术可以扩大规模。
因为目前只是在一个相对较小的领域进行规划,仍然有很大的改进空间。通过增加更多的二极管激光器,可以增加更多的加热面积,如果有人想把它集成到一个打印面积更大的系统中。更重要的是,研究人员将探索控制钛合金(Ti64)的相变。通常,当使用Ti64构建时,相变会导致金属变得非常脆弱,导致部件开裂。如果研究人员能够通过缓慢冷却零件来避免这种转变,就能使材料的延展性达到航空航天标准。
转载请注明出处。