柠檬光子发明的高功率模块冷板堆叠方案,通过各层冷板整体组成的堆栈式散热结构,内部可形成多层并联宏通道流道,流道内形成缓冲结构,使得每一层的导热效率都能根据芯片功率、芯片大小能够做灵活调整,从而大大提高单冷板的导热效率且降低成本!
集微网消息,高端半导体激光芯片是我国激光产业链的缺失环节,同时也是3D传感、AR/VR、机器人、激光雷达等最新一代光通讯生态系统应用的核心器件。
过去,高功率半导体激光器领域,基于GaAs材料的边发射半导体激光器一直占据统治地位,并广泛应用于工业,医疗,科研等领域。然而,边发射半导体激光器却存在其致命的缺陷,虽然预期寿命长达数万小时,但是在脉冲状态下,光学灾变性损坏几率极大,对寿命影响严重。
而如今高功率半导体激光器以其广阔的应用前景加上巨大的潜在市场,已然成为各国竞相追逐的热点,但是,其可靠性和稳定性,一致性等问题,又很大程度上限制了这一块的实际应用,其中之一高功率半导体激光器所面临的问题就是激光器的性能。即激光器的输出光电转换效率。
而这些问题除了跟激光器外延材料和封装有关外,很大程度上都受整体发热密度和散热效率影响,目前市面激光器的散热器,内部设置微通道散热,然而这种内部流道水压调试比较麻烦,且部品工艺比较复杂。由于微通道内部是微流道,在流体不净的情况下,十分容易堵塞,而且只能更替堵塞板,相对维护成本也偏高。
为了解决这样的问题,柠檬光子在19年10月29日申请了一项名为“一种针对面发射激光芯片的高功率模块”的发明专利(申请号:201911038830.2),申请人为深圳市柠檬光子科技有限公司。
根据目前公开的专利资料,让我们一起来看看这项高功率模块方案吧。
如上图所示为针对面发射激光芯片的高功率模块的立体图示意图,据该专利介绍,这种高功率模块可以用作高功率直接半导体激光器,例如可以作为高速熔覆模块可用于高速激光熔覆系统,其带有高质量激光阵列条和高效的散热结构,具有封装结构简单、高效、低成本等优点。
从图中可以看到高功率模块整体为冷板堆栈式封装结构,包括若干条冷板堆叠形成,每条冷板封装集成多个面发射激光芯片14形成单独模块。其中最上层的冷板作为顶部密封板2,最下层的冷板作为底部密封板3,中间的若干条分离的冷板7上下堆叠。
堆栈式封装结构的外壁表面集成了多个面发射激光芯片,各条冷板的同一侧外壁表面封装多个面发射激光芯片,堆栈式封装结构各层集成的芯片排列成面发射激光芯片阵列4,每条冷板集成的面发射激光芯片发光面上设置准直透镜5,用于调整面发射激光芯片光束的均匀性。
除此之外,高功率模块还连接有进水管1和出水管6,进水管、顶部密封板、冷板以及底部密封板的内部流道12以及出水管之间相互贯通,形成冷却通道用于给芯片降温。
如上图所示为冷板间单元的组合结构示意图,针对面发射激光芯片的高功率模块包括由多个面发射激光芯片封装集成的单独模块,先以单独芯片14对齐单独的散热块的定位基准即限位侧,贴合好以后,然后依次首尾紧挨的排列若干个芯片集成到散热块上。
通过将焊料焊接到散热块上,使得整体模块置于打金线设备上,首尾相连打上金线,且与两端的电极模块8由金线11相连,从而将依次首尾紧挨的排列若干芯片形成串联的电连接。
各单独冷板以及密封板2、3上集成的芯片分别排成一排,对应每层设置一条准直透镜5来调整一排芯片发射光的光束均匀性,通宽度在准直透镜工作范围临界点以内,保证合光效率。
最后,同样的,每条冷板内部形成有水冷流道12,水冷流道是在冷板上直接加工而成,是沿冷板厚度方向自顶面或底面凹陷一定深度且沿冷板长度方向或集成芯片的排列方向延伸的一条通道。流道在沿冷板厚度方向层流时候,各层之间互相隔离,每排芯片对应有一条水道,其中承载着冷却水或者其他冷却液体,用以加强局部散热效率。
如上图为单冷板平流层流道以及温度梯度示意图,专利中提到在常温常压下,单冷板需要解热600W热功率,可以从图中看出单条内部流道整体温度分布均匀,没有出现局部过热等现象,而这里采用八条中间层分离冷板,两个顶底板结构,封装有150个芯片。
并且需要说明的是,这种高功率模块冷板堆叠方案,通过冷板分条封装,减小大功率集成模块整体加工的工装治具体积,也在后续维修保养上能够节省很大的成本空间,只需要针对故障冷板做排查或者更换处理。
以上就是柠檬光子发明的高功率模块冷板堆叠方案,通过各层冷板整体组成的堆栈式散热结构,内部可形成多层并联宏通道流道,流道内形成缓冲结构。使得每一层的导热效率都能根据芯片功率、芯片大小能够做灵活调整,从而大大提高单冷板的导热效率且降低成本!
转载请注明出处。