少周期飞秒驱动源是产生极紫外波段孤立阿秒脉冲的重要条件,采用常规方案需要经过光谱展宽与脉冲压缩两个过程,效率低且压缩元件对大能量脉冲的承受能力十分有限。近年来,人们利用光谱展宽过程中的非线性效应实现色散补偿,即自压缩效应,为解决该问题提供了新思路,不仅简化了脉冲压缩过程,也有利于大能量超短脉冲的产生。然而,自压缩效应存在复杂的非线性过程,既要展宽脉冲光谱,还要满足脉冲传输过程中的正负色散匹配,因此对自压缩效应的控制较为困难。尤其是,常用的800nm波段钛宝石激光由于缺乏具有合适负色散的光学材料,通常较难实现自压缩。
中国科学院物理研究所/北京凝聚态物理国家研究中心光物理重点实验室研究员魏志义研究组长期致力于少周期激光脉冲产生的研究,最近该组博士研究生高亦谈在副研究员赵昆、研究员魏志义等的指导下,基于研究组内发展的薄片组光谱展宽技术,利用飞秒钛宝石放大激光电离产生的锥状辐射效应,通过在空间上精确寻找到色散匹配最佳位置,并配合空间滤波,获得了少周期飞秒自压缩脉冲。实验中,科研人员所用钛宝石激光器的中心波长约800nm,脉宽小于40 fs。在该激光脉冲注入下,其产生了光谱覆盖从650至900nm、脉宽短至8.8 fs的少周期脉冲,数值模拟的最短脉宽达5.0 fs。该工作展示出在800nm中心波长附近能稳定产生少周期自压缩脉冲的方法,首次实现了在固体材料自压缩中对电离的调控,其在高功率少周期脉冲产生以及后续的阿秒脉冲产生方面存在潜力。此外,由于通过空间滤波后的自压缩脉冲光斑为环形分布,而环形光斑在高通量高次谐波的产生过程中被证明有独特优势,因此可为后续极紫外激光的产生研究提供稳定可靠的光源。
相关研究成果发表在Optics Express上。研究工作得到国家重点研发计划和国家自然科学基金的支持。
图1.空间上自压缩效应的原理图
图2.基于薄片组自压缩的实验装置示意图
图3.精确调控电离强度后的自压缩模拟结果
转载请注明出处。