阅读| 订阅
阅读| 订阅
深度解读

脉冲光纤激光器的峰值功率极限

hth官方来源:光至科技2022-01-20我要评论(0)

1.1 引言更高的功率、更短的脉冲、更强的亮度是激光器技术发展不变的追求。在脉冲激光器工业应用中,短脉冲、高峰值对材料加工效果有重要影响。光纤激光器相比固体激光...

1.1引言

更高的功率、更短的脉冲、更强的亮度是激光器技术发展不变的追求。在脉冲激光器工业应用中,短脉冲、高峰值对材料加工效果有重要影响。光纤激光器相比固体激光器而言,在平均功率上更具优势,在峰值功率上则受到明显的限制。长期以来光纤脉冲激光器的脉宽局限在ns以上,峰值15kW以内,以100ns 1mJ为标准。

光至科技自成立以来,以“光照万物,至诚致远”为发展愿景和价值理念,以创新创造价值为生存之本,专注于光纤脉冲激光器的品质提升。光至科技自2019年推出GT系列MOPA脉冲激光器以来,历经多轮迭代,不断完善,将激光器的峰值功率推升到150kW以上,脉冲宽度延伸到200ps以下,高功率光束质量优化到1.4以内,为光纤MOPA脉冲激光器开拓了无损标记、玻璃打孔、极片切割以及薄片金属高强度焊接等的应用场景和极致的加工体验。

图1 光至科技200W GT系列MOPA脉冲激光器

2.提高脉冲峰值功率的方法

如图2所示的激光脉冲序列中,峰值功率等于脉冲能量除以脉冲宽度,因此在同等能量条件下,缩短脉冲宽度可以大大增加峰值功率,同等脉宽条件下,提高峰值则可以增加脉冲能量。目前主流工业市场上固体脉冲激光器中,纳秒级脉宽的激光器能量可达mJ级,以1mJ能量10ns脉宽计算,峰值功率可达100kW。皮秒脉冲激光器能量在300μJ左右,以10ps计算,峰值功率可达30MW。飞秒脉冲激光器能量以100μJ,脉宽500fs计算,则峰值功率达到200MW。作为比较,常规的MOPA纳秒脉冲激光器的峰值功率在10kW左右,远低于固体激光器的指标。

图2 脉冲宽度与峰值功率

3.提高光纤脉冲峰值功率的受限因素

图3给出了大模场单芯光纤的输出能力受限因素分解框图。主要的受限因素包括5项:负载能力受限、B 积分受限、提取效率受限、光束质量受限以及偏振态受限。在图3给出的各种物理机制的解决方法分属于不同的设计层级,具体包括:基质材料、增大模场、导模结构和偏振结构属于光纤设计层级,图中以蓝色框表示;端面戴帽扩束、模式激发、模式滤波属于器件设计层级,图中以橙色框表示;泵浦方式、隔离滤波和偏振控制属于单元设计的层级,图中以绿色框表示;增大带宽、脉宽选择、重频选择和增益分配则属于系统设计层级,图中以紫色框表示。除了上述5项之外,在连续高功率光纤激光器中需要考虑的热效应并未在此列出,因为我们追求的高峰值功率光纤放大器中,平均功率远远低于热效应能够发挥显著作用的范畴,在此不做讨论。

图3 脉冲光纤激光器峰值功率受限因素分析

负载能力受限以激光强度度量,物理机制包括体损伤和面损伤,其中面损伤可以通过端面戴帽技术予以避免,体损伤则受限于光纤基质材料特性,为极限受限因素。典型地,光强阈值约为4.75kW/µm2,对 50µm 的模场直径,对应的损伤功率阈值达到 9.3MW,已经远超过目前脉冲光纤激光器芯内峰值功率的水平,也高于自聚焦阈值功率,因此,体损伤目前还不是需要考虑的问题。

提取效率主要受限于自发辐射放大(ASE),受限于多级放大器的增益分配,级内则受限于脉冲的占空比。特别是在亚纳秒短脉冲放大条件下,ASE直接限制了脉冲能量的提升,也限制峰值功率的提升。不过ASE的限制可以通过合理设计多级放大器,优化级间增益分配和泵浦方式来抑制,另外还可以通过光谱滤波和声光滤波的方式减少传导到后级的ASE成分。合理的级间增益分配还有助于抑制脉冲增益饱和问题,获得更加完美的脉冲波形。

光束质量受限以光束质量因子 M2度量,为获得基模输出主要是要通过光波导导模结构设计以保证单模或者少模运转,在此基础上辅助以不同芯径光纤熔接时模式激发控制以及光纤盘绕等模式滤波手段来改善光束质量。目前能够保证高光束质量输出的常规光纤就是30/250,光子晶体等特殊光纤的纤芯可以扩大到100µm左右。这种模场尺寸相比工业固体激光器毫米级的光斑尺寸仍然太小,后面提到的诸多非线性效应都跟B积分有关,而B积分是反比于模场面积的。

偏振态受限以偏振度度量,物理机制主要是光纤波导的偏振特性。在普通的双包层光纤中,线偏振光会发生退偏,且退偏度对弯曲和环境参数敏感,难以保持稳定的偏振态输出。同样条件下,偏振光一般比非偏振光的峰值功率阈值低一半,因为非偏振光可以分解为两个正交的非偏振光分量。

在脉冲光纤激光器中,影响峰值功率最重要的因素是B积分,也就是光纤中的非线性相位偏移量,B积分的定义如下:

可见,B积分正比于功率随光纤长度的积分,同时与模场直径和激光波长成反比。

光纤中的三阶非线性效应可以分为两大类:一类是光强诱导的折射率调制效应,包括自相位调制(SPM)、交叉相位调制(Cross-Phase Modulation:XPM)、调制不稳定性(Modulation Instability: MI)、四波混频(Four-Wave Mixing:FWM)以及自聚焦(Self-Focusing: SF)等;另一类是非弹性光散射效应,涉及光子与基质材料晶格振动之间的能量交换,包括受激布里渊散射(SBS)和受激拉曼散射(SRS)。这其中,最高的限制取决于自聚焦阈值,对光纤材料而言,这个值大概在4MW的水平。在自聚焦阈值之下,受激拉曼散射是最重要的限制,因为拉曼光相比基频光的光谱频移量高达60nm,拉曼成分过高会严重影响隔离器磁光晶体的作用,也会给镜头带来很大的色差。图4给出了光纤内峰值功率超过自聚焦阈值时产生的自聚焦成丝的演化过程。

图4 功率为 2倍自聚焦阈值功率(8MW)下,在(图a)80µm和(图b)200µm芯径光纤中LP02模式的光强分布

4.提高光纤脉冲激光峰值功率的应用

在深刻理解脉冲光纤激光器峰值功率提升受限物理限制的前提下,通过综合优化光纤选型、放大器设计和关键器件定制,光至科技推出了全系列GT高峰值功率脉冲MOPA激光器产品,实现了从200ps到50ns的短脉冲高峰值放大,从20W到200W平均功率全覆盖,峰值功率包括GT30、GT60、GT100、GT150等多个规格。

光至针对阳极铝打黑推出的20W GMX,脉宽低至500ps,峰值约40kW,同等打黑效果下效率能较普通MOPA 20W提升1~3倍,极具性价比。

图5 200ps,速度从1000mm/s增加至10000mm/s效果

图6 不同脉宽下黑度值与雕刻速度的关系

针对玻璃打孔,光至推出的GT系列产品,功率从80W到200W,峰值100kW,可以实现多种玻璃70mm以内的切孔,这突破了超短及绿光光源才能做的应用,将玻璃切割设备成本大幅度降低。

图7 100W GT切割3mm玻璃70mm孔

武汉光至科技有限公司是一家定位与服务精密制造的先进光源供应商。为了满足各客户的需求,正打造以武汉总部为中心,5大办事处服务全国的布局,目前已建成的有华南深圳办事处和华东苏州办事处,均可为客户提供打样服务。

转载请注明出处。

免责声明

① 凡本网未注明其他出处的作品,版权均属于hth官方 ,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:hth官方 ”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0 相关评论
精彩导读
新闻更新 关键字库 产品更新 企业名录 新闻文章 会议展览 站点地图
Baidu
map