阅读| 订阅
阅读| 订阅
数控机床

直线电动机实现机床进给系统零传动(二)

星之球激光来源:华强电子网2012-01-14我要评论(0)

4直线电动机的发展及应用 国外直线电动机发展 发展历史 直线电动机发展的起点并不比旋转电动机晚很多,在世界上出现旋转电动机后不久,就出现了直线电动机的雏形,但直...

4 直线电动机的发展及应用

国外直线电动机发展

发展历史

直线电动机发展的起点并不比旋转电动机晚很多,在世界上出现旋转电动机后不久,就出现了直线电动机的雏形,但直线电动机的发展过程是曲折的。

1845年英国人Charles Wheastone发明了世界上第一台直线电动机,但这种直线电动机由于气隙过大而导致效率很低,未获成功。到20世纪中叶,控制、电子、材料等技术的发展,为直线电动机的开发提供了理论和技术上的支持,直线电动机开始进入新的发展阶段。英国的E.R.Laithwaite教授是现代直线电动机发展的先驱者,他强调直线电动机的基础研究,以他为首的研究小组取得了不少重要的成果。代表人物还有日本的山田一教授,他撰写了多本有关直线电动机的著作。20世纪70年代以后,直线电动机应用的领域更加广泛,如自动绘图仪、液态金属泵(MHD)、电磁锤、轻工机械、家电、空气压缩机和半导体制造装置等。90年代以后,随着高速加工概念的提出,直 线电动机开始作为进给系统出现在加工中心中。由于直接驱动进给系统具有传统进给系统无法比拟的优点和潜力,再次受到各国的重视。据有关报导,美国1997年直线电动机及驱动装置的销售额为4553万美元,预计2002年将达到10772万美元。

直线电动机作为一种机电系统,将机械结构简单化,电气控制复杂化,符合现代机电技术的发展趋势。

美国的Anorad公司是世界上最著名的直线电动机生产商,该公司在1988年就推出了无刷直流直线电动机,并获得美国专利。公司主要生产永磁同步式直线电动机,形成了不同结构、不同功率的一系列产品,广泛应用于各种领域。

德国的Indramat公司既生产感应式直线电动机,又生产永磁式直线电动机,共50多个型号。永磁式具有高效率(最高1.72N/W)和高推力密度的特点。据报导,其产品速度能达到600m/min,推力达22kN。

为了降低直线电动机的价格,Trilogy公司推出了直线编码模块(LEM)。它利用电动机的磁场提供位置的反馈,与行程无关。可工作于恶劣的环境,提供的换向信号与全行程传感器一样,分辨率和重复精度为5µm。

其他直线电动机生产商的产品各具特色,详细请见刘金凌等所著《高频响直流直线电机》(刊于《微特电机》1993年第4期)。在机床和加工中心的应用直线电动机在高速加工中心和其它大行程数控机床进给系统中的应用还是近几年的事情。安装直线电动机的机床必须有先进的数控系统、很高的刚度和固有频率,移动部件的质量要尽量小,这样才能充分发挥直线电动机的能力。另外,机床中直接驱动进给系统的设计还要考虑冷却与散热问题。为了防止切屑和各种粉末被直线电动机的敞开式磁场吸引,还必须采取隔磁和防磁措施。此外,直线电动机不象丝杠那样可以自锁,如果电动机垂直安装,还要考虑平衡配重和制动等环节。

Ford、Ingersoll和Anorad公司在80年代中期的合作,最初实现了直线电动机在机床上的应用。Ford公司希望机床既高速、高精度,又高柔性。合作的结果是Ingersoll公司推出了“高速模块”HVM800,其三轴都安装了Anorad公司的永磁式直线电动机,获得很好的性能。

德国Ex-Cell-O公司于1993年在德国汉诺威欧洲机床展览会上展出世界上第一台直线电动机驱动工作台的XHC240型高速加工中心,采用的是德国Indramat公司开发的感应式直线电动机,各轴移动速度高达80m/min,加速度可达1g。之后,许多厂商纷纷推出安装直线电动机的加工中心。据统计,1997年采用直线电动机的机床销售量为300台,预计到2005年将增加到3000台。10年后,将有20%的数控机床安装直线电动机。

除了切削加工机床外,其他机床如激光切割、等离子切割、电火花加工等设备也开始应用直线电动机。

国内直线电动机的研究情况

虽然国内研究直线电动机的单位不少,但将直线电动机作为机床或加工中心进给系统研究的主要有3所大学:广东工业大学成立了“超高速加工与机床研究室”,主要研究和开发“超高速电主轴”和“直线电动机高速进给单元”。他们研究的是直线感应电动机,开发了GD-3型直线电动机高速数控进给单元,额定进给力为2kN,最高进给速度100m/min,定位精度0.004mm,行程为800mm。从90年代后期开始,沈阳工业大学对永磁直线同步电动机进行研究,并制造了推力为100N的样机。他们研究的另一重点是电动机的控制方式及伺服系统,并就此发表了多篇论文。清华大学精密仪器与机械学系制造工程研究所成功地研制了高频响直流直线电动机,行程可达5mm,截止频率大于250Hz,推力达几百牛顿,用于驱动中凸变活塞车床的横向刀架,在实际加工中获得了较好的应用效果。现在正在进行研究的是长行程永磁直线伺服单元,电动机的额定推力为1500N,最高速度60m/min,空载最大加速度1g,行程600mm。

应该看到,在国内,直线电动机特别是机床进给系统中的直线伺服电动机的研究还处于起步阶段,研究人员和经费明显不足,进展也比较慢,和国外的差距越来越大,加强研究已是迫在眉睫。为了打破国外的技术垄断,必须走技术跟踪和自主开发相结合的道路,加强基础和关键技术的研究。

5 发展趋势与研究方向

发展趋势

目前直线电动机直接驱动技术的发展呈现出以下趋势:

机床进给系统用直线伺服电动机,将以永磁式为主导:

将电动机、编码器、导轨、电缆等集成,减小电动机尺寸,便于安装和使用:

将各功能部件(导轨、编码器、轴承、接线器等)模块化:

注重相关技术的发展,如位置反馈元件、控制技术等,这是提高直线电动机性能 的基础。

研究方向

直线电动机的研究目标是提高电动机性能,满足应用要求。直线电动机的主要性能包括速度、加速度、推力及其波动、定位精度、重复定位精度、机械特性(速度-推力特性)、瞬态性能(速度响应)和热特性等。

作为一种机电系统,要提高性能无非可从结构和控制两方面着手。

结构设计
直线电动机包括初、次级磁路结构以及支撑、传感测量、冷却、防尘、防护等机械结构。

磁路设计
磁路设计最重要的任务是使电动机的推力和推力波动达到设计要求。

电动机内磁场分布的计算是磁路设计的基础。由于结构的特殊性,使得直线电动机存在端部效应,引起磁场的畸变,同时使用硅钢片等软磁材料来聚合磁路,媒质边界曲折交错、磁路复杂、非线性强。如果采用传统的等效磁路法或图解法进行计算,将会产生较大的误差,甚至是不可能的。因此目前普遍采用数值解法—主要是用有限元法(FEM)来计算直线电动机的磁场分布,从而进一步计算推力及其波动以及垂直力等性能。目前市场上已经有很多优秀的电磁场FEM软件可供选用,所以用FEM计算直线电动机电磁场的关键点在于建立精确的有限元模型。

减少推力波动是磁路设计的一个重点也是难点。推力波动产生的原因有:初级电流和反电动势存在高次谐波、气隙磁密波形非正弦、齿槽效应、端部效应等。通过优化永磁铁的形状和排列方式、降低永磁励磁磁密、初级采用无铁心和多极结构、增加槽的数目、加大气隙等措施可以减小推力波动,但某些措施会造成其它性能的减弱,所以设计时应综合考虑设计要求,达到最佳效果。#p#分页标题#e#

机械结构设计 机械结构涉及的问题很多,在这里我们只强调一下对冷却系统的研究,因为这个问题很容易被忽略。其实热特性是直线电动机的一个重要特性,同一型号的电动机有冷却时的推力峰值是无冷却时的两倍,所以电动机冷却系统的好坏对电动机的性能有很大的影响,从冷却系统着手进行优化设计是提高电动机性能的一条捷径。电动机热特性的分析一般也采用有限元法,在计算结果的基础上对冷却进行优化设计。

控制技术的研究

控制技术是直线电动机设计的另一个重点和难点。

直线伺服系统运行时直接驱动负载,这样负载的变化就直接反作用于电动机:外界扰动,如工件或刀具质量、切削力的变化等,也未经衰减就直接作用于电动机:电动机参数的变化也直接影响着电动机的正常运行:直线导轨存在摩擦力:直线电动机还存在齿槽效应和端部效应。这些因素都给直线电动机的控制带来困难。控制算法中必须要对这些扰动予以抑制或补偿,否则容易造成控制系统的失稳。

总体来说,控制器的设计要达到以下要求:稳态跟踪精度高、动态响应快、抗干扰能力强、鲁棒性好。不同的直线电动机或不同的应用场合对控制算法会提出不同的要求,所以要根据具体情况采用合适的控制方法。目前直线伺服电动机采用的控制策略主要有传统的PID控制、解耦控制,现代控制方法如非线性控制、自适应控制、滑模变结构控制、H∞控制、智能控制如模糊控制、人工智能(如人工神经元网络系统)控制等。

可以看出,直线电动机的控制算法运算量大,而且在高速加工进给系统的实际应用中实时性很强,因此对整个数控系统提出了很高的要求。要满足这种要求,在优化控制算法的同时,还应采用高性能的硬件。在高速加工中心进给系统中通常采用全数字驱动技术,以PC作为基本平台,DSP实现插补和伺服控制。

虽然直线电动机的控制比旋转电动机难度大得多,但他们的电磁特性和运行原理基本相似,而旋转电动机的伺服控制技术已发展得比较成熟。所以在实验研究阶段,为了尽快建立实验系统,以验证设计的可行性,我们也可以将旋转电动机的伺服控制器改造成直线电动机的伺服控制器,这样可以降低研制的成本和周期,对开发专用的直线电动机伺服控制器也有指导意义。

试验研究理论研究是设计的基础,但要确定电动机的性能,归根到底还要靠具体的试验。旋转电动机的性能试验技术已经很成熟,并且已经标准化,但直线电动机的性能试验还没有统一的方法。因此研究高效精确的直线电动机性能试验方法也是一个很重要的课题,对理论研究也有促进作用。试验研究的关键点在于各项参数如速度、加速度、静态力、动态力、位移、温度等的准确测量,如果需要还要设计专门的试验台。根据理论计算的结果进行设计方案优化,在此基础上制造出样机,然后通过对样机进行性能试验,验证设计的正确性。一台性能优良的直线电动机往往要经过多次反复计算、试验才能制造出来。

转载请注明出处。

免责声明

① 凡本网未注明其他出处的作品,版权均属于hth官方 ,未经本网授权不得转载、摘编或利用其它方式使用。获本网授权使用作品的,应在授权范围内使 用,并注明"来源:hth官方 ”。违反上述声明者,本网将追究其相关责任。
② 凡本网注明其他来源的作品及图片,均转载自其它媒体,转载目的在于传递更多信息,并不代表本媒赞同其观点和对其真实性负责,版权归原作者所有,如有侵权请联系我们删除。
③ 任何单位或个人认为本网内容可能涉嫌侵犯其合法权益,请及时向本网提出书面权利通知,并提供身份证明、权属证明、具体链接(URL)及详细侵权情况证明。本网在收到上述法律文件后,将会依法尽快移除相关涉嫌侵权的内容。

网友点评
0 相关评论
精彩导读
新闻更新 关键字库 产品更新 企业名录 新闻文章 会议展览 站点地图
Baidu
map