低压配电系统的正常运行直接关系到人们的工作、学习和生活,所以保证系统安全、稳定和无故障运行是至关重要的。而在低压配电系统中的漏电、短路及零线断线等故障是最常见的故障,由它们引发的人身触电事故、电气设备烧损及严重的电气火灾时有发生,所以必须对这些故障采取防范和保护措施。
一、单相短路或接地
1.故障产生的原因。单相短路或接地引发的原因通常是由于:(1)导线与保护装置配合不当,使得导线处于过载运行而开关拒动,导线过热绝缘损坏;(2)导线本身疲劳运行;(3)导线绝缘因受潮或腐蚀而损坏;(4)导线本身质量问题;(5)开关本身切断能力不够。
2.产生的危害。单相短路故障的危害是显而易见的,即发生短路时若保护装置不能及时动作,则导线过热引起电气火灾造成重大经济损失。在TN-C-S低压配电系统中发生单相接地且同时发生PEN线断线,如某设备与外壳相碰,且系统在S处断线,则高电位会经PE线传至零线,使负载中性点发生偏移,对系统用电器造成危害。在某些施工现场无健全保护,一旦发生单相接地,设备外壳带电,对人构成接触电压。
3.防范及保护措施。为了防止导线过载运行、保护装置拒动而引起的故障,要求导线与保护装置的配合必须满足要求。采用带接地脱扣器型断路器,当发生单相短路或接地时会产生零压相从而使接地脱扣器动作,切断电源进行保护,所以无需采用为了加大接地故障电流而降低故障回路阻抗的措施,便可排除故障,这样既节省投资又可弥补低压断路器保护范围不足的缺陷。
二、漏电
漏电的定义所谓漏电是指外壳为金属的用电器,工作时不允许外壳带电,由于某种原因引起绝缘损坏使其外壳带电进而对人形成接触电压的现象。漏电是介于正常和短路之间的一种故障,可以说漏电就是短路的前奏,及时排除这类故障是防止短路的有效措施。
三、光纤保护实际应用中存在的问题
3.1施工工艺问题
光纤保护是超高压线路的主保护,通道的安全可靠对电力系统的安全、稳定运行起到重要的作用。由于光缆传输需要经过转接端子箱、光缆机、电缆层和高压线路等连接环节,并且光纤的施工工艺复杂、施工质量要求高,因此如果在保护装置投入运行前的施工、测试中存在误差,则会导致保护装置的误动作,进而影响全网的安全稳定运行。
3.2通道双重化问题
光纤保护用于220 kV及以上电网时,按照220 kV及以上线路主保护双重化原则的要求,纵联保护的信号通道也要求双重化,高频保护由于是在不同的相别上耦合,因此能满足双通道的要求,如果使用2套光纤保护作为线路的主保护,通道双重化的问题则一直限制着光纤保护的大规模推广应用。
3.3光纤保护管理界面的划分问题
随着保护与通信衔接的日益紧密,继电保护专业与通信专业管理界面日益难以区分,如不从制度上解决这一问题,将直接影响到光纤保护的可靠运行。对于独立纤芯的保护,通信专业与继电保护专业管理的分界点在通信机房的光纤配线架上。配线架以上包括保护装置的那段尾纤,属于继电保护专业维护,这就要求继电保护专业人员具备一定的光纤校验维护技能。
3.4光纤保护在旁路代路上的问题
线路光纤保护在旁路代路时不方便操作,由于光纤活接头不能随便拔插,每次拔插都需要重新作衰耗测试,而且经常性拔插也容易造成活接头的损坏,因此不宜使用拔插活接头的办法实现光纤通道的切换。对于电网中没有单独的旁路保护,旁路代路时是切换交流回路,因此不存在通道切换问题,但对电网有独立的旁路保护,对于光纤闭锁式、允许式纵联保护暂时可以采用切换二次回路的方式,但对于光纤差动电流保护则无法代路,目前都是采取旁路保护单独增设一套光纤差动保护的方法解决。已有部分厂家在谋求解决光纤保护切换问题的办法,如使用光开关来实现光纤通道切换。
结束语
尽管目前光纤保护在长距离和超高压输电线路上的应用还有一定的局限性,在施工和管理应用上仍存在不足,但是从长远看,随着光纤网络的逐步完善、施工工艺和保护产品技术的不断提高,光纤保护将占据线路保护的主导地位。
转载请注明出处。