半导体激光器具有光学特性优秀、单色性好、体积小和寿命长等一系列的优点,随着科技的发展,已被广泛应用在国防、通信、医疗和测量等领域中。半导体激光器需要专用的驱动电路,一般均采用恒流源电路。市场上专业的激光器驱动设备性能好,功能强大,然而价格昂贵,体积较大,对产品开发来说,一款小巧、功能简单、性能稳定、价格低廉的激光器驱动电路很具有实用价值。
在传感和检测等应用领域,往往需要激光器工作在恒定功率状态,而半导体激光器是非线性器件,受温度等影响较大,电路中电阻等元器件的老化也会改变半导体激光器的特性,因此需要补偿各种因素产生的影响。而在发射阈值电流以上时,半导体激光器的发光功率与驱动电流成线性关系,这使得通过控制驱动电流来调整发光功率成为可能。
电路工作原理分析
图1所示为激光器自动功率控制系统原理框图,整体电路形成一个闭合环路,通过负反馈机制稳定激光器的输出功率。该驱动电路由电压比较器、电容充放电模块、恒流源和反馈回路构成,电容充放电模块根据比较器输出电压的高低循环跳变来对电容进行充放电,最终将其电压值稳定在某预设值,从而间接控制恒流源的输入电压,并进一步控制激光器电流,恒流源直接驱动LD激光器,它的输入电压和激光器驱动电流成正比例关系。
图1 激光器自动功率控制系统原理图
系统上电后,电压比较器的正端设定正电压值VSET,负端电压假设为0,则比较器输出的低电平致使电容充放电模块对电容充电,随着电容电压的缓慢上升,恒流源的驱动电流不断升高,激光器输出光强不断升高,PIN探测电流变大,从而导致反馈回路输出电压升高,直至高过比较器正端电压VSET后,比较器输出由低电平跳变为高电平,接着执行上述过程的反过程:电容放电、激光器功率减小,由此循环往复,最终稳定激光器发光功率。
转载请注明出处。