激光切割
激光切割是利用激光束聚焦形成高功率密度的光斑照射工件,材料吸收光能,温度急剧升高,将材料快速加热至熔化或气化温度,再用喷射气体吹化,以此分割材料。在这一过程中,当激光照射工件表面时,一部分光被工件吸收,另一部分光被工件反射。吸收部分转化为热能,使工件表面温度急剧升高,材料熔化或气化,同时,产生黑洞效应,使材料对光的吸收率提高,迅速加热熔化或气化切割区材料。此时吹氧可以助燃,并提供大量的热能,使切割速度提高等。切割宜用连续输出激光器。特点:激光可切割特硬、特脆及特软材料、高熔点的难加工材料;切缝宽度很窄; 切割表面光洁; 切割表面热影响层浅,表面应力小; 切割速度快,热影响区小; 无机械变形、无刀具磨损,容易实现自动化生产
激光焊接
激光焊接是把激光聚焦成很细的高能量密度光束照射到工件上,使工件受热熔化,然后冷却使工件得到焊接。激光焊结熔深大,速度快,效率高; 激光焊烧区窄,热影响区很小,工件变形也很小,同时,焊缝小,可实现精密焊接; 焊接结构均匀,品粒很小,气孔少,夹杂缺陷少,在机械性能、抗蚀性能和电磁学性能上优于常规焊接方法。
激光热处理
激光热处理是利用高功率密度的激光束对金属进行表面处理的方法。如当把金
属表面加热到仅低于熔点的临界转变温度时,其表面迅速奥氏体化,然后急速自冷淬火,金属表面迅速被强化,即激光相变硬化(激光淬火)。激光表面热处理技术包括激光相变硬化技术、激光涂覆技术、激光合金化技术、激光冲击强化技术等,这些技术对改变材料的机械性能、耐热性和耐腐蚀性等有重要作用
(一)钻孔
早期激光钻孔采用定点冲击法:即在一个位置上用脉冲激光束不停地加工,直至孔通。这种加工方法,使加工的孔深和孔径均受到限制。
高重复频率YAG激光器进入实用阶段后,出现了旋切钻孔法(Trepanning),即用专用光学旋转头或数控自动生成圆轨迹进行激光套料加工。这不仅消除了孔径限制,且由于有辅助吹气,加工区呈半敞开式,熔融物易排出,故孔表面质量好。
对于分布有大量相同规格小孔的零件,特别是回转体,当前又发展了飞行打孔法(Drilling on the fly),即激光对一个孔位加工一个脉冲后,不管孔是否打通,工件都利用光脉冲间隙快速运动(移动或转动)到下一个孔位,如此进行多次循环对同一位置多次冲击,直至完成所有孔的加工。其优点是激光脉冲间隙的时间被用作零件孔的位移,可大大提高加工速度。钻孔速度目前为每秒数10孔,预计可达每秒500孔(亚毫米孔径)。技术的关键在于激光到达,工件必需运动到位,这对非均布孔来说有很大难度。用CNC闭环控制系统控制,当孔加工速率更高时,为保证圆的孔形,在激光作用时间内,激光束必须与零件同步运动。 激光飞行打孔在航空零件加工中已得到了应用,环形燃烧室的冷却孔加工是典型的应用实例。此外,高速飞机的机翼和发动机进气道的前沿,气流极易与翼表面分离,形成紊流增大而气动力损失,为此,设计了有吸气功能的层流翼(短舱)套,其表面是由1mm厚的钛合金板制成,上面分布了1200万至10亿个锥孔,外表面孔径0.06mm,内表面孔径为0.1mm,孔间距为0.3~1mm,层流翼套的小孔也是用飞行打孔法完成的。
对于微米量级孔径的筛孔,用准分子激光或调Q的YAG激光快速扫描加工(每秒可加工数千孔)可得到满意的结果。
(二)切割
激光切割近期仍以CO 2 激光为主,随着器件功率的加大,切割深度和速度都有大幅度提高。为提高加工质量,采用高压吹气(压力达1.6~2.0MPa),用 3.4kW的功率的CO 2 激光可切割5~6mm厚度的铝板,切口光滑,正、背面不留熔渣。 值得提出的是采用两束激光复合切割材料,能取得更低的能耗。图1是两种激光复合切割的实验装置示意图。试验表明,用CO(270W)激光与KrF(30W)激光复合切割,比单用一束CO(300W)激光切割碳钢可提高速度30%,切割厚度可增加40%以上。
转载请注明出处。