实验所采用的CGJ-Ⅲ型激光热处理宽带扫描转镜,是利用光学转镜反射使光速快速摆动,把点光源拉宽成线热源。有文献对线形光源在金属材料表面产生的温度场进行的数值模拟显示,激光光斑前沿材料表面有一预热区,由于热传导激光光斑的后沿温度分布形成一个“尾巴”。对于功率密度呈高斯分布的热源,其能量主要集中在光斑中心。
能量密度分布的上述差异,决定了在输出功率相同的条件下线形光源的扫描速度应比圆形光源慢。因而经线形光源处理的样品内部碳元素扩散比较充分,垂直于扫描方向的淬火层组织分布比较均匀,硬度沿硬化层深分布也比较均匀,波动幅度较少。但线形光源前沿预热区的存在增加了材料表面对激光的吸收率,使得沿扫描方向温度变化较大,晶粒易于粗化,这可通过连续改变扫描速度加以修正。此外,由于线形光斑后沿“尾巴”的存在,冷却速度较慢,增加了淬火层中的残余奥氏体含量。前期对40Cr钢进行线形光源和圆形光源激光淬火实验证实了这一点。值得留意的是,激光淬火层中残余奥氏体可以在经受塑性变形后转变成马氏体,有利于被处理材料耐磨性的进步。
转载请注明出处。