1 问题的提出
通过采用聚焦极好的千瓦级CO2激光可大大提高焊接的速度。与此有关的对传统激光加工机动力学方面的高要求只有少数激光装置能满足。尤其是严重弯曲的轨道运动,如小尺寸部件结构的加工更成问题。
即使是动力学最佳的激光机,如以线性运作的二维切割设备在切割10 mm 直径的圆结构时也只能得到约20 m/min 的轨道速度。曲率半径较小的轨道结构只能降低精度或减小速度进行。
2 解决的途径
替代和补充传统激光加工机普通的卡笛儿式或交链式轴系的方法是采用使激光束在工件上移动的光束偏转系统。用该系统替代常用焊接和切割头时,操作系统(龙门吊或工业机械手)只能承担对部件的基本定位和加工头的作用,实际操作进量由加工头中转动的光束偏转系统反射镜来实现。由于该偏振镜质量轻,这种光束转动即使在很高的推进速度(600 m/min) 时也特别精确。
这种光束偏转系统目前主要用于激光标记或低激光功率(几百瓦)的焊接。这里激光束通过透镜聚焦,由两个相互垂直、通过电流计扫描器驱动的偏振镜移动光束聚焦在工件上。偏转系统的结构和操作原理不仅确定了偏转系统与部件间的距离,还确定了最大可达工作范围。因为焦点在一个环形面上移动,这在原理上决定了像差的出现。这与待加工外形的尺寸,即所需激光束的偏转角有关,可能限制使用范围。采用平场透镜可避免这种像差,可在确定的工作场所用恒定光束强度加工平面工件。
由于采用透镜光学件和扫描反射镜,商用光束偏转系统的供应商将可传输的激光功率限制在几百瓦,而对于机械制造中通常的毫米级焊深来说,则需几干瓦功率的激光。
3 高功率激光的光束偏转系统
夫朗和费材料-射柬技术研究所为此研制一种光束偏转系统,用于激光功率高至4kW 的CO2 激光加工时。这有助于将高技术可实现的加工进给速度化为工业应用。
加工系统由具有电流计扫描器的光束偏转单元和具有抛物面镜的聚焦系统组成,该抛物面镜可以通过附加反射镜完成动态焦点跟踪。于此产生一种硬件基本块形成模件式PC卡的控制和特种加工任务的控制程序,该系统还采用光束监控附加部件加以完善。此外,为了传输高功率激光,对所有光学部件都进行冷却。
4 应用实例
替代轴运动系统的一个例子是用一维光束偏转的小部件激光点焊,这里激光功率和脉冲序列同时得到控制。自1977 年以来工业部门流行的加工中已实现500 ms 内16个焊接点。于是在一个多站加工台上可将8个圆形弯曲板条焊成一个环。每年这类焊件数约2000 万。
另一可望成功的应用领域是将螺帽、管脚、管子等焊入组合部件。焊接时间约100ms。这里,需要用传感器控制确定下一待焊管的位置,以免由于位置公差使整个部件扭曲。
原则上,图形加工的轨迹,尤其是加工小直径时,用其他系统也可达到,但采用光束偏转系统可以几乎是无限制地实现加工形状的多样化。因为对于光束偏转系统来说,与传统运动系统的不同在于,在焊缝产生的过程中要保持恒定的进给速度,待加工的几何尺寸不起重要作用,相反加工头与部件的精确定位倒是重要的。
转载请注明出处。