尖端科技之花在产学研后“红”
这根钛合金材质的C919中央翼缘条,尺寸3.07米,重量196千克,于2012年1月打印成功,同年通过商飞的性能测试,2013年成功应用在国产大飞机C919首架验证机上。
这是国产机型首次在设计验证阶段,利用3D打印技术制备承力部件,在国际民机的设计生产中亦属首次。更重要的是,作为机翼关键部件,以我国当时的制造能力,还无法锻造出这样超大尺寸的复杂结构件。而如果向国外采购,又势必影响大飞机的国产化率。
“金属3D打印技术,为钛合金零部件的加工提供了新的技术途径,也为中国的航空制造打开了一扇新窗。”该技术研发人、西北工业大学教授黄卫东告诉笔者。
“3D打印”学名“增材制造技术”,原理是将计算机设计出的三维模型分解成若干层平面切片,然后把要“打印”的材料按切片图形逐层叠加,最终“堆积”成完整的物体。
为C919制造中央翼缘条,是金属3D打印技术在航空领域应用的典型。黄卫东及其团队应用该技术所打印出的金属材料和零部件,目前已广泛应用于我国的导弹、飞机、火箭、卫星、航空发动机等领域,仅为国产各类飞机就制备了近两万个零部件,其中绝大部分已装机使用。
早在上世纪90年代初,黄卫东就关注起了能够快速成形、快速进行原型制造的“3D打印技术”。在他的西北工业大学本科同班同学、企业家折生阳的出资支持下,他持续20多年钻研金属3D打印技术,并不断取得重大突破。
2011年7月,应中国商飞经营合作要求,西北工业大学与折生阳、黄卫东共同组建了由西北工业大学技术控股的股份制企业——西安铂力特增材技术股份有限公司。西北工业大学和黄卫东出技术,折生阳等出资金,黄卫东任董事长,折生阳为副董事长。
产权明晰,责权利清晰的校企合作,促使这一尖端成果加速实现产学研融合。其最具标志性的成果,正是那根3.07米高的C919中央翼缘条。
回忆起这件“缘条”,黄卫东等人至今印象深刻。2011年年初,“课题组”接到要为C919打印中央翼缘条任务。他们奋力拼搏、日夜鏖战,不到1年时间,在废旧教学实验厂房里建成了现代化工厂,研制出金属3D打印专用设备,完成了一系列要求极高的性能测试工作,同时组建西安铂力特公司,并赶在2012年年初完成了打印缘条的准备工作。
此后,团队20多人加班加点,与时间赛跑,终于赶在2012年1月22日上午,一次性成功打印完成了第一件C919中央翼缘条。“那天正逢大年三十。”当天中午,西北工业大学周尧和院士激动地宴请攻坚团队吃了顿团圆饭,“团圆饭从中午一直吃到大年三十晚上,大多数人都喝多了!”吃完饭、喝完酒,已是新年的大年初一,团队成员赵晓明才想起还没置办年货。
公司化后,黄卫东团队的金属3D打印技术在科研上突飞猛进,产业化也进展神速。2018年,这一技术为中国商飞、中航工业、中国航发、中国航天科工、中国航天科技等200多家单位,增材制造超过3万件金属零件,批量应用于一批先进的飞机、发动机、火箭和卫星等国家重大任务。
行业翘楚引得“空客”来
2017年3月,在上海举行的亚洲3D打印、增材制造博览会上,一件超大尺寸的航空发动机叶片吸引了参观者的目光。
这件933厘米的零件,是目前世界上SLM(铺粉方式)技术打印的一次成形尺寸最大的钛合金零件。叶片重量与同尺寸碳纤维复合材料叶片相当,但侧向性能更好,整体化成形也使得零件的可靠性大大提高。
航空发动机关键零部件,传统技术生产难度极高。黄卫东团队的金属3D打印技术,做到了简单化生产,只需电脑设计好打印程序,按切面一层层打印即可。
黄卫东告诉笔者,金属3D打印技术的优势,一是几乎能制造出任何复杂结构的零件,非传统技术可比;同时,其轻量化、拓扑优化的特点,又能为材料实现可观的减重,这在对重量“斤斤计较”的航空航天领域尤其重要。
另外,航空航天零件结构复杂、成本高昂,一旦出现瑕疵或缺损,只能整体更换,可能造成不可估量的损失。但通过金属3D打印技术,就可用同一材料将缺损部位修补成完整形状,修复后的性能不受影响,大大节约了时间和金钱。
与此同时,他们还开发出激光金属3D打印商用设备,这使铂利特公司不仅成为目前国内最大的金属3D打印零件加工商,也成了技术最领先的金属3D打印高端设备制造商。
“我们只和全世界最优秀的团队合作”。2014年3月,欧洲空中客车公司与西北工业大学和铂力特签署合作协议,共同开发激光立体成形技术(激光3D打印技术的一种)在航空领域的应用。
空客主动找上门来要求合作,一是看中公司有“最优秀”的科研团队,二是看中公司有“最优秀”的运营团队。
铂力特公司技术来源于西北工业大学,依托西北工业大学凝固技术国家重点实验室和激光制造工程中心,科研实力雄厚;拥有一支高精尖科研精英团队,研发人员占全员的40%,超过30%的员工拥有硕士以上学历。
铂力特公司的运行机制独树一帜。虽然西北工业大学和黄卫东拥有的共同技术股份占51%,黄卫东出任公司董事长,但公司实际控制人是懂企业会经营的折生阳。折生阳拥有公司重大事项一票否决权,把握着公司的运营方向。
“让教授干教授的事情,让企业家干企业家的事情。”既当过科研人员、又当过科技管理干部、已下海营商20多年的折生阳这样说。在公司发生重大争议时,折生阳的“最后一票”尤显重要。
当年,在生产出激光金属3D打印设备后,多数人都认为不应该将自家的这一“聚宝盆”推向市场让与他人。折生阳从企业长远发展角度认为应该卖,先共同把市场做大,企业也能多条腿走路。激烈争吵之后,折生阳运用自己的一票否决权,大胆推动公司将设备推向市场,这也才有了这些设备在众多单位和企业的热销,并成功出口法德,享誉欧洲。
2018年,铂力特通过了空客公司IPCA认证,启动了空客A330增材制造项目,成为空客亚洲区唯一的金属增材制造合格供应商。同年8月,空客又与西北工业大学和铂力特分别签署联合科研合作协议,三方进入联合研发时代。
让设计更自由,让制造更简单
2014年,歼20总师杨伟来西北工业大学专程考察金属3D打印技术。在那根3.07米高的C919中央翼缘条旁,一同展出的还有专为歼20试制的部分金属3D打印零部件。杨伟看了又看,摸了又摸,感慨万千。
杨伟之所以震撼于金属3D打印技术,是因为设计历来都要受限于生产技术和生产工艺。拿飞机设计来说,即使有再好的空气动力学设计、再好的综合性能设计,如果没有一家公司能生产出来,没有一个工厂能加工出适配的零部件,再好的设计都是白搭——金属3D打印技术已经解决和正在解决这一难题。
人类制造,从原始人打制石器最早开端。这也正是持续百万年一直到今天的“减材制造”,即不断把多余的部分去掉。机械制造时代的切、割、钻、铣等工艺,包括精密的数控机床冷加工都是“减材制造”。有了火之后热加工的锻、打、锤、敲等制造属于“等材制造”,最典型最简单的就是铁匠打铁。
无论是减材制造还是等材制造都有局限性:一是无法整体加工复杂零部件,都是先生产出一个个不同结构的零件,然后再或铆或焊、或连或接,耗时耗工;二是根本无法加工超异形超复杂超薄壁结构体;三是难以为零部件减重。
而这些,金属3D打印技术都可以克服。“可能有一天,我们甚至会整体打印出一套完整的航空发动机。”团队成员、公司总工程师赵晓明激情澎湃。
相比减材制造和等材制造,增材制造无疑是一场巨大的革命。
黄卫东说,在C919的设计验证阶段,中央翼缘条的成功试制贡献巨大,传统工艺6个月才能完成的制造工作,用金属3D打印技术耗时仅仅5天,并且一次成形,一次成功,金属原料钛合金涂层粉末,更是几乎没有半点浪费。
黄卫东的博士生、铂力特总经理薛蕾说,金属3D打印出的蜂窝状金属结构体,因良好的力学性能,轻量化、拓扑优化的特点,可以广泛应用于对材料要求极其严苛的航空航天航发领域。比如,替代传统技术所生产的机翼、机身材料,在坚固结实的同时,大大地减轻航空航天器材自重,设计人员就无需再经常为减重而不得不牺牲飞机性能,牺牲武器挂载。
薛蕾介绍,他们目前在航空航天航发领域打印的两万余件零部件,在产品结构优化和功能提升的同时,均实现了整体结构减重,最高减重超过60%。
“金属3D打印正在创造一个宏大的新世界,今天,这个宏大的新世界仅仅是展现出一抹晨曦。”在黄卫东看来,热加工的发明,使人类从“石器时代”进入“金属器时代”,冷加工的发明则推动人类进入“复杂机械时代”,而增材制造必将促成人类制造能力的又一次大飞跃。
“它将带动人类进入全新的‘自由设计时代’,并从根本上转变制造方式,推动社会产生更进一步的巨大变革。”黄卫东和薛蕾告诉笔者,革命性的金属3D打印技术将“让设计更自由、让制造更简单”,将弥补我国传统金属加工业的短板和不足,助力中国工业制造完成从“机械加工”到“智能制造”的转变。
转载请注明出处。